Чилийское землетрясение и цунами 1 апреля 2014 года

Таблица 1. Уточненный очаг									
ID	Latitude	Longitude	L(<i>km</i>)	W (<i>km</i>)	DE(grad)	LA(grad)	TE(grad)	D0 (<i>m</i>)	H_top(km)
	19.6° S	70.8°W	200	75	14	90	160	6	5
-17.5° -18° -18.5° -19°	-72.5°	120	571.5°		-70.5°	-70°	- 5 .5°	-69°	-68.59
-20° -20.5° -21° -21.5°	The second s	-WAPME	ERR				A A A A A A A A A A A A A A A A A A A		©2005)

<u>РЕАЛЬНОСТЬ</u>

Рисунок 1. Основные очаги (красные кружки) и афтершоки (желтые кружки)

GAUGE LOCATION	LAT	LON	TIME	AMPL	PER
JUAN FERNANDEZ	33.6S	78.8W	02.15Z	0.16m/0.5ft	36min
SAN FELIX CL	26.3S	80.1W	01.37Z	0.68m/2.2ft	06min
COQUIMBO CL	30.0S	71.3W	01.38Z	0.15m/0.5ft	34min
CALDERA CL	27.1S	70.8W	01.02Z	0.11m/0.4ft	30min
CHANARAL CL	26.4S	70.6W	01.33Z	0.24m/0.8ft	28min
CALLAO LA-PUNTA PE	12.1S	77.2W	01.58Z	0.12m/0.4ft	38min
ARICA CL	18.5S	70.3W	01.16Z	1.83m/6.0ft	18min
MATARANI PE	17.0S	72.1W	01.27Z	0.58m/1.9ft	08min
PAPOSO CL	25.0S	70.5W	01.25Z	0.26m/0.9ft	22min
PISAGUA CL	19.6S	70.2W	00.55Z	2.01m/6.6ft	12min
MEJILLONES CL	23.1S	70.5W	01.03Z	0.86m/2.8ft	34min
TOCOPILLA CL	22.1S	70.2W	01.09Z	0.42m/1.4ft	10min
DART32402	26.7S	74.0W	00.44Z	0.05m/0.2ft	44min
ANTOFAGASTA CL	23.7S	70.4W	00.34Z	0.25m/0.8ft	18min
PATACHE CL	20.8S	70.2W	00.15Z	1.51m/5.0ft	10min
	20.2S	70.1W	00.05Z	2.11m/6.9ft	12min

Таблица 2. Measurements or reports of tsunami wave activity

LAT – Latitude (N – North, S – South), **LON** – Longitude (E – East, W – West)

TIME – Time of the measurement (Z is UTC is Greenwich time) **AMPL** – tsunami. **AMPLITUDE** – Measured relative to normal sea level. It is not crest-to-trough wave height. Values are given in both meters(m) and feet(ft).

PER – Period of time in minutes(min) from one wave to the next.

NOTE – DART measurements are from the deep ocean and they are generally much smaller than would be coastal measurements at similar locations.

Рисунок 2. Карта очаговой области чилийского землетрясения 1.04.2014 (в 23:46:46 UTC) с Mw=8.2 Положение инструментального эпицентра показано красной зведочкой, зарегистирированные на данный момент афтершоки - красными кружками. Черная звездочка показывает положение эпицентра землетрясения с Mw=6.7, происшедшего в этом же районе 16.03.2014 (в 21:17:31 UTC). Серые кружки показывают афтершоки этого землетрясения. Рисунок подготовлен в графической оболочке WinITDB.

Рисунок 3. Вертикальный разрез в очаговой области чилийского землетрясения 1.04.2014с Mw=8.2 Красные кружки показывают положение гипоцентров исторических землетрясений по данным каталога NEIS. Голубые кружки показывают гипоцентр и афтершоки землетрясения 1.04.14. Верхний рисунов показывает профиль земной поверхности (при 10-кратно уведиченнном вертикальном масштабе). Рисунок подготовлен А.В.Ландером

Рисунок 4. Максимальные амплитуды цунами, зарегистрированные береговыми мереографами в окрестностях очаговой области.

Рисунок 5. Зависимость интенсивности цунами по шкале Соловьева-Имамуры от магнтиуды Мw для тихоокеанских цунами за период 1900-2013. Ожидаемая интенсивность (красная линия) для цунами 1.04.2014 I=2.0

ИЗ АРХИВА

× 0 0

1 a 0.	таолица 5 параметры модельного очага (№ 58) землетрясения с магнитудой 9.0											
ID	Latitude	Longitude	L(km)	W(km)	DE(grad)	LA(grad)	TE(grad)	D0 (<i>m</i>)	$H_top(km)$			
38a	20.1°S	70.2°W	430	150	20	90	185	11.6	20			

Рисунок 6. Схема расположения мареографов вблизи защищаемого побережья. Красные точки – «защищаемые» пункты, синие – дополнительные виртуальные мареографы на защищаемом побережье, зеленые – прибрежные датчики PTWS, оранжевые – виртуальные датчики DART, черные – дополнительные виртуальные датчики DART.

Рисунок 7. Расчетное время распространения головной волны цунами (в часах) для модельного очага с Mw=9.0 в точке с координатами 20.1S, 70.2W, h=10 km

Рисунок 8. Диаграмма свечения (поле максимальных положительных значений амплитуд за все время расчета для модельного очага с Mw=8.4 с механизмом типа пологого подвига в точке с координатами 20.1°S, 70.2°W, h=20 km, □=185°

Рисунок 9. Расчетное распределение максимальных положительных и отрицательных амплитуд цунами (красные и синие столбцы соответственно, вертикальная ось слева, значения величин – в метрах) в береговых точках Дальневосточного побережья РФ, а также времена регистрации (в час) этих экстремальных значений высот волн и регистрации первых возмущений (розовые, голубые, соответственно, вертикальная ось справа). Источник - модельный очаг с Мw=8.4 в точке с координатами 20.1S, 70.2W, h=20 km, □=185°

НОВЫЕ РАСЧЕТЫ

манан нага (N_{0} 386) замлатрядания с магнитилай 8 Λ

таблица ч. парамстры очага у			yruanch	точненного модельного (32 300) землетрясения с магнитудой 0.4					
ID	Latitude	Longitude	L(<i>km</i>)	W (<i>km</i>)	DE(grad)	LA(grad)	TE(grad)	D0 (<i>m</i>)	H_top(km)
38б	19.8°S	70.8°W	215	75	20	90	185	6.1	5

Τοδπμμο Α Πορομοτριιομο

Рисунок 10. Диаграмма свечения (поле максимальных положительных значений амплитуд за все время расчета для модельного очага с Mw=8.4 с механизмом типа пологого подвига в точке с координатами 19.8S, 70.8W, h=5 km, □=185°

Рисунок 11. Расчетное распределение максимальных положительных и отрицательных амплитуд цунами (красные и синие столбцы соответственно, вертикальная ось слева, значения величин – в метрах) в береговых точках Дальневосточного побережья РФ, а также времена регистрации (в час) этих экстремальных значений высот волн и регистрации первых возмущений (розовые, голубые, соответственно, вертикальная ось справа). Источник - модельный очаг с Мw=8.4 в точке с координатами 19.8S, 70.8W, h=5 km, □ =185°

Таблица 5. Уточненный очаг

ID	Latitude	Longitude	L(<i>km</i>)	W (<i>km</i>)	DE(grad)	LA(grad)	TE(grad)	D0 (<i>m</i>)	H_top(km)
	19.6° S	70.8°W	200	75	14	90	160	6	5

Рисунок 12. Изолинии начального возвышения для источника с параметрами: Mw=8.4, lat = 19.6S, long = 70.8W, h=5 km, □ =160°; голубая линия соответствует уровню -0.1 m, красная – +0.1 m.

Рисунок 13. Диаграмма свечения (поле максимальных положительных значений амплитуд за все время расчета для модельного очага с Mw=8.4 с механизмом типа пологого подвига в точке с координатами 19.68, 70.8W, h=5 km, □ = 160°.

Рисунок 14. Расчетное распределение максимальных положительных и отрицательных амплитуд цунами (красные и синие столбцы соответственно, вертикальная ось слева, значения величин – в метрах) в береговых точках Дальневосточного побережья РФ, а также времена регистрации (в час) этих экстремальных значений высот волн и регистрации первых возмущений (розовые, голубые, соответственно, вертикальная ось справа). Источник - модельный очаг с Мw=8.4 в точке с координатами 19.6S, 70.8W, h=5 km, □ =160°